Direct sums
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Let Uy, ..., U be a family of vector subspaces of a vector space V over a field F.
Given any family of subspaces Uy, ..., U, we defined in Linear Algebra 1 its sum to be the smallest
vector subspace of V' containing all of the U;’s. Equivalently,

U1+...—|—Uk:{u1—|—...+uk|ui EUl}
Recall that in the particular case of two subspaces of a finite dimensional space we have the formula:
dim(U + V) = dim(U) + dim(V) — dim(U NV)

In particular by induction we have dim(U;y + ... + Uy) < dim(Uy) + ... + dim(Uy).

Definition 1: We say that a family Uy, ..., Uy of vector subspaces of V is linearly independent if for
any choice of vectors u; € Uy, ... ,u, € U, we have

U+ ...+ur=0 <= u; =0,...,u, =0

In that case, we call Uy + ...+ Uy the direct sum of the spaces Uy, ..., Uy, and we denote it by
Ui d...0U.

Remark 2: This is equivalent to saying that any vector u € Uy + ...+ Uy has a unique representation
as uy + ...+ up with u; € U; for each i: suppose u = u; + ...+ up = uy + ... + 'k, we deduce
(ur —uj) + ...+ (up — u}) = 0. Since u; — v} € U;, we get that for each i u; = u} - the representation
of u is unique. Conversely, if each vector has a unique representation, in particular so does the zero
vector, hence the only way to write it as a sum 0 =uy + ...+ u, is to write 0 =0+ ...+ 0.

In particular for any i # j we have U; N U; = {0}, but it is much stronger than this.

Example 3: e In R3: two distinct lines in R3 are linearly independent. A line and a plane not
containing it are linearly independent. Two planes are never linearly independent. Three distinct
lines are linearly independent iff they are not contained in a common plane.

e A family of nonzero vectors v, ..., vy is linearly independent <= the corresponding family of
subspaces Span(vy), ..., Span(vg) is linearly independent.
Proposition 4: Let Uy, ...,U; be a family of finite dimensional vector subspaces of a vector space V.

The following are equivalent:
1. Uy, ..., Uy are linearly independent;
2. for any i, U;N (32, Uj) = {0}
3. dimU = dim(Uy) + ... + dim(Uy).

Proof. (1 = 2)LetveU;n} ;Ui Thenve Uy, sov=0+...+04+v+0+...+0 but we also
have v = w1 + ... +uj—1 + Uip1 + ... + ug for u; € Uj for all j # i. By independence of the spaces, all
the vectors are zero, hence so is V.



(2 = 3) By induction on k. For k = 1, this is clear. Induction: denote Vi, = Uy + ... + Uy, we
have dim(Vy, + Ugy1) = dim(Vy) + dim(Ug41) — dim(Vy N Ug41). By induction hypothesis, dim(V;) =
dim(U;) + ... + dim(Ug), and by (2) we have Vi, N Up41 = {0}, so we get the result.

(3 = 1) Note that applying the formula for the dimension of the sum of two subspaces we get

dim(Uy + ... 4 Ug) = dim(Uy) + . .. + dim(Uy) Zdlm U; mZU

Thus if 3 holds, we have for each i that U; N 3, ,; U; = {0}. Suppose now uy + ... +up = 0,
assume by contradiction that not all the u; s are zero, and let ¢ be maximal so that wu; ;é 0. We have
u; = —(uj—1 + ... +uy) thus u; € U; N Z U This is a contradiction. Thus u; = 0 for all 4. O

(The equivalence between (1) and (2) holds also for infinite dimensional vector spaces).

Proposition 5: Let Uy,..., Uy be an independent family of finite dimensional vector subspaces. For
each i, let A; = {vi,... ,vfi} be a linearly independent set of vectors in U;. Then A1 U...U Ay is
linearly independent.

Proof. Suppose that (Ao + ... 4+ A v}) + ...+ (Mol + ...+ A} vlk) = 0. Since Uy,...,Uy is an
independent famlly of vector spaces, for each 1 we must have vt + ..+ )\f'ivfi = 0. By linear
independence of vi,. .. ,fuli we get A} =... = )\li = 0, which proves the result. O
Corollary 6: Let Uy,...,Ux be an independent family of finite dimensional vector subspaces. If

Bi, ..., By are bases for Uy, ..., Uy respectively, then By U ... U By is a basis for Uy ® ... ® Uy

Proof. By the previous proposition, B; U ... U By is a linearly independent family of vectors. But its
cardinality is Zle dim(U;), which by Proposition |4|is exactly dim(U; @ ... @ Uy). O



